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ABSTRACT: We consider chiral perturbation theory in a finite volume and in a mixed regime
of quark masses. We take N; light quarks near the chiral limit, in the so-called e-regime,
while the remaining N quarks are heavier and in the standard p-regime. We compute in
this new mixed regime the finite-size scaling of the light meson correlators in the scalar,
pseudoscalar, vector and axial vector channels. Using the replica method, we easily extend
our results to the partially quenched theory. With the help of our results, lattice QCD
simulations with 241 flavors can safely investigate pion physics with very light up and
down quark masses even in the region where the pion’s correlation length overcomes the
size of the space-time lattice.
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1. Introduction

It is now becoming feasible to simulate Quantum Chromodynamics (QCD) near the chiral
limit in lattice gauge theory. Deeper theoretical understanding of chiral symmetry on the
lattice, development of very efficient algorithms, and a constant progress in the compu-
tational resources have allowed a reduction of the dynamical quark masses almost to the
physical point of the u and d quarks. As the quark masses approach zero, however, one
has to be increasingly careful about finite-volume effects since the correlation lengths of
the pions, the pseudo-Nambu-Goldstone bosons, diverge in that limit.

Such an infrared effect due to finite volume can be systematically treated within the
framework of the low-energy effective theory. Due to the mass gap between the lightest
particles, the pseudo-Nambu-Goldstone bosons that are generically referred to as “pions”,
and the other hadrons, the heavier particles have an entirely different sensitivity to the
finite volume. The euclidean partition function of QCD receives contributions from the
full spectrum, but if the chiral limit is taken at finite volume these higher states give



exponentially suppressed contributions. In this way, by varying the volume, one can tune
to as high accuracy as one wants by including only those degrees of freedom that are
associated with the pseudo-Nambu-Goldstone bosons. In QCD, one is interested in a
situation where two of the quarks (the u and the d) are extremely light, while a third (the
s) is closer to the QCD scale Aqcp, but still light on the scale of the ultraviolet cut-off
47 F (where F' is the pion decay constant) in the effective low-energy theory.

It is therefore important to investigate how the finite volume can affect low-energy
dynamics within the pion effective theory, chiral perturbation theory (ChPT) [[l-[{. An
extreme finite-volume situation is reached in the so-called e-regime where the pion correla-
tion length 1/m, exceeds the size L, T of the 4-dimensional space-time volume V = T'L3,

1

< LT <« —. 1.1
Aqcep My (1.1)

The lower bound is to ensure validity of the effective chiral theory, the coupling constants
of which are the same as those at infinite volume.

A systematic expansion exists in the e-regime, where all zero-momentum modes of
the pseudo-Nambu-Goldstone bosons have to be treated exactly. An appropriate power-
counting in this regime is

Vg ~mg ~ p? o~ 1L~ 1T? ~ (1.2)

in units of the cut-off of the theory. With this counting, the operators in the Chiral
Lagrangian have different weights than in the ordinary ChPT at infinite volume, known
as the p-expansion. There is therefore a re-ordering of the perturbative expansion: in
many cases, the infinite-volume chiral condensate ¥ and the pion decay constant F' (both
in the massless limit), play a more prominent role than in the conventional large volume
regime, since next-to-leading order corrections are calculable in terms of these leading-
order couplings alone. This opens up the possibility of extracting some of these low-energy
constants from lattice QCD in new ways [[I|-[H].

With non-degenerate quark masses one can define an e-regime and a p-regime for
each of the now mass-split pseudo-Nambu-Goldstone bosons. In particular, one can also
consider a mized regime in which some pseudo-Nambu-Goldstones obey the condition for
the e-regime, while others fall into the p-regime [ff]. For the latter, the counting rules are
the usual ones of chiral perturbation theory,

mg~mz ~ p* ~ 1/L* ~ 1/T?* ~ é. (1.3)

A typical situation could be w and d quarks so light that the physical pions are in the
e-regime, but the strange quark mass is such that the physical kaons are in the p-regime.
Further possibilities open up when one considers partially quenched theories. In those cases
one can imagine situations in which all physical u, d and s quarks are in the p-regime, while
valence quarks corresponding to all or some of these are taken closer towards the chiral
limit, and thus end up in the e-regime. Such situations could perhaps be realized in the
context of mixed-action lattice simulations where dynamical configurations are generated



with physical quarks that are in the p-regime and can be well treated by, say, ordinary
Wilson fermion actions. Valence quarks, which are taken to the chiral limit, could then be
of, say, overlap type. Another situation could be the use of overlap quarks that are all or
partly in the p-regime, while also overlap valence quarks are taken to the e-regime.

It is our belief that all these possibilities must be and will be explored in future lattice
gauge theory studies. The present paper gives an analytical formalism for studying cor-
relation functions of pseudo-Nambu-Goldstone bosons in that setting. Apart from quark
masses, the two remaining limitations are the approach to the continuum limit, and the
finite volume. In the present framework the finite volume V > 1/ AaCD is used as a tun-
able parameter with which to extract physical observables. The only extrapolation needed
will thus be the one associated with taking the continuum scaling limit. With the new
analytical formulas for partially quenched correlation functions available one can extract
far more information for a given number of lattice configurations. In addition, with the
mixed-regime predictions we also provide here one is effectively covering the full SU(3)
flavor sector of QCD at low energy. The extent to which the s quark at the physical point
is light enough to provide a good description in terms of chiral dynamics remains to be
tested in detail on the lattice.

One important feature of the e-regime is the strong sensitivity to the topology of the
gauge fields, a direct consequence of the finite volume. A crucial ingredient in making
the e-regime so useful for lattice gauge theory computations is the fact that the zero-
momentum integrals can be performed analytically at fixed topology, typically in terms of
Bessel functions. With different detailed predictions for each sector of topological charge
there is a wealth of analytical results that can be used to confront numerical lattice data.

These analytical predictions are non-perturbative in the gauge theory coupling. Re-
markably, some of the leading-order e-regime results were first derived on the basis of chiral
Random Matrix Theory [[. It is particularly simple to derive analytical expressions for
Dirac operator eigenvalues in that formulation [§], and it is well understood how to go
between the two formulations [[J]. These features all carry over into the mixed regime.

The computation of meson correlators in the e-regime was first performed in [fj and
extended to both quenched and unquenched QCD at fixed topology a few years ago [[L0]-
[(2]. The effect of a coupling to isospin chemical potential has also been considered [[J].
Partially quenched ChPT (PQChPT) in the e-regime was done for the chiral condensate
itself in [[4]. Recently, partially quenched space-time correlation functions were computed
in several channels (pseudoscalar, scalar, and the left-current) of meson correlators [[[3, [
Also, the first computation of three-point correlation functions relevant for weak decays
in the e-regime was done in [[[f]. Some of these studies have led to determinations of
the leading order low-energy coefficients ¥ and F' at various sectors of fixed topology in
quenched lattice simulations (see, e.g., [I§-[g]), as well as the low-energy couplings of
the AS = 1 Hamiltonian from three-point functions [R9, BJ]. Difficulties associated with
the quenched approximation have been discussed in [I0, [[J]. Recently, several groups have
successfully extended this to full QCD in or close to the e-regime. This has been done both

1See, e.g. ref. [ﬂ] for a recent summary of results.



on the basis of Dirac operator eigenvalues and space-time correlation functions [B1]-[[].

In this paper, we present the results for various meson correlators in the mixed regime
of ChPT where N; light quarks are in the e-regime while N, = Ny — N; quarks remain
relatively heavy and belong to the standard p-regime. We have used two different methods
to treat this regime. The first uses the same mixed-regime perturbative expansion that was
introduced in [|§]. As a check, we have also used a new perturbative approach which has the
advantage that it provides a smooth interpolation between the e-regime and the p-regime.
The expected matching between the mixed regime and the standard e-regime is trivial to
check in that formalism. The two methods should agree to all orders, and we have checked
explicitly that they do agree at least up next-to-leading order in the mixed-regime power
counting.

We treat the most general non-degenerate case where the required non-perturbative
zero-mode integrals are performed according to ref. [[§]. The two-point functions of the
light sector, for the pseudoscalar, scalar, axial, vector channels, are then computed. They
can be used to extract the leading low-energy constants > and F'. Because we work at
next-to-leading order, there is also explicit dependence on some of the L;’s. In principle
these low-energy constants can be determined from fits to varying quark masses in the
heavier sector, as will become clear below. The pseudoscalar and scalar channels for the
disconnected diagrams are also given. We easily extend our results to the partially (and
fully) quenched theory by applying the replica method. One can confirm that our formulae
reduce to all previously derived limiting cases of both the degenerate INy-flavor theories
and the fully quenched theory. There are new isospin-breaking effects when the u and d
quark masses are split, and the existence of these terms can be used to extract additional
information from the correlators. The new more general expressions should be helpful for
future lattice gauge theory simulations that aim at approaching the chiral limit.

We start in section J| by reviewing the mixed-regime perturbative expansion of [f]. The
results for the two-point functions at next-to-leading order are presented in section f|. An
alternative new approach is also briefly described there. The calculations are completed
in section ] by explicitly performing the zero-mode integrals for the full, the partially
quenched, and the fully quenched theories. As a check on our results, we note the complete
agreement between our two approaches and the correct matching between the mixed and
pure € regimes is then also explicitly confirmed. In section [, we give an explicit example
for Ny = 2+1 theory presenting the pseudoscalar and axial vector correlators. Conclusions
and an outlook for the future are presented in section [f.

2. Chiral perturbation theory in the mixed-regime

In this section we review the perturbative expansion of the chiral Lagrangian that was
introduced in [f]] to treat the mixed regime. It incorporates features of both e and p
expansions, allowing for the simultaneous presence of quarks with masses corresponding
to these two regimes. The existence of such a mixed expansion will be useful for lattice
simulations at the physical points of the three lightest quark flavors u,d and s, or, more
modestly, simulations where only associated valence quarks are taken to that limit.



Let us consider an Ny-flavor theory in a finite volume V = L3T,

2
Ez%H@WW@WM—%MMW@%+%WﬁMhmq (2.1)
where U(z) € SU(Ny) and Uy = exp(if/N¢)I. Here 6 is a QCD vacuum angle, introduced
here only in order to be able to project on fixed gauge field topology by doing a Fourier
transform in #. As usual, Y. denotes the infinite-volume chiral condensate in the massless
limit, and F' is similarly the pion decay constant in the chiral limit. Note that there
are next-to-leading order terms, indicated here by ellipses, each of which correspond to
additional low-energy constants denoted by, in the SU(3) case, L;.
For the mass matrix M = diag(mj,mz---), we consider the most general non-
degenerate case, where we have N; light quark masses in the e-regime:

M1, = my, ~ O(1/V), (22)
while the other Nj, = Ny — N; quarks are heavier:
Mhihi = Mmp,; ~ 0(1/V1/2)7 (23)

in units of the cut-off of the theory. Here and in the following, we put a subscript [ for the
light sector and h for the heavier sector and denote the mass matrices in those sectors by:

Ml = P]MP] ./\/lh = Ph./\/lPh, (2.4)

where Pj, Py are projectors on the light and heavier sectors respectively. The working
assumption is of course always that chiral perturbation theory is meaningful even for the
heavier sector.

In ref. [[j] an expansion was proposed according to the following counting rules:

pu~0O(e), L,T~O0O()e), Myn~O(), Mpy,~O(). (2.5)

An inspection of the pion propagator shows that the zero modes of the Nambu-Goldstone
fields associated with the generators in SU(N;) need to be treated non-perturbatively. All
the remaining zero-modes are perturbative when N;, N, # 0. Some subtleties appear
however in the partially-quenched case where all the light quarks are quenched, that is the
replica limit N; — 0.2 In this case, it is easy to see that the Goldstone field associated to
the generator T,

1
51 0
T,= |2 , (2.6)
0 —a5In

gets massless in the replica limit N; = 0. Here I/, are the identity matrices in the light
and heavier sectors. Note that 7;, looks ill-defined when N; = 0 but keeping [V; finite until
the very end of the calculation, one sees that the replica limit N; — 0 can be safely taken.

2As usual the fully-quenched case N; + N = 0 requires the presence of the singlet to be well-defined,
but as long as N; + Nj, # 0 the singlet decouples.



To treat all cases on the same footing, we therefore consider the following parametriza-

3
U(z) =exp <2z§}£x)> <({)0 I(:L) exp(inTy,), (2.7)

where Uy € SU(V;) is a constant matrix, 7 is the zero-mode of the Nambu-Goldstone field
associated with the T;, generator. The ¢ fields contain the non-zero modes corresponding

tion:

to all Nambu-Goldstone fields, and also all zero modes of those degrees of freedom that are
not treated separately. They therefore satisfy the constraints

/ dz Tr[T,&(x)] = / d*z Tr[T,&(x)] = 0, (2.8)

where T, is a generator of the subgroup SU(XV;). Note that the zero-mode of the T,
generator is not included in the & field (it is projected out by the second constraint in
eq. (R.)), and included explicitely in the last term of eq. (2.7).

We are interested in computing the correlation functions in sectors of fixed topology.
Following the same derivation in [ff] we rewrite

U@Us =UG@) [ €7 2 :exp<2i5<‘””)) (UO y ) (2.9)

.
0 €I, F 0 e 'Mnl

where we have defined
n—0 - n+6
e 2.10
5 5 (2.10)
and Uy € U(N;) with det Uy = eif det(Up) = ¢®. The partition functional in sectors of
fixed topology can then be written as:

n

2, [ [dg] fdn /U o [400] T(€) aei(T) exp (— [ dzcen Uo>>, (2.11)

where as in the standard e-regime, the projection on fixed topology results in the enlarge-
ment of the zero-mode integration from SU(N;) to U(N;). J(&) is the Jacobian of the
change of variables of eq. (£.7). According to the power-counting of eq. (2.§), it can be
shown that a consistent power-counting for the fields ¢ is:

&~ Ofe), (2.12)
therefore both the Lagrangian and the Jacobian can be perturbatively expanded in powers
of £&. At next-to-leading order we find [, fil:

_q,__4 4 202 2 4
N =1 gy [dle Y BEE- @O0 +OE. (213

aeSU(N)UTn

3In reference [ﬂ] a different parametrization was considered for the case when some or all of the light
quarks are dynamical. In that case the n zero-mode is also perturbative and can be included in €. It turns
out that the parametrization of eq. (@) simplifies the calculations and allows one to consider the full and
partially quenched cases on the same footing. Therefore we consider only eq. (@) in the present paper.
We have checked that both give the same result in the full case.



The Lagrangian can also be obtained as an expansion in e:
L=LD4O 4 (2.14)

with terms up to O(e*), up to O(€%), etc. Concerning the integration over the variable 7, we
can perform a saddle-point approximation following the derivation of [ff]. The leading-order

oA 2
My, <§ - ENihPh>

Lagrangian is found to be:

z
2

Tr [MI(UO + UOT)] + gTr

LV
72 +1=1.

o
(2.15)

LY =Tr [0,£0,8] —

This quadratic form implies also a power-counting of 77 ~ €. According to this rule, the last
term in eq. (R.15) could be treated as a perturbation. This is true as long as v ~ O(e"),
as is usually the case in the e-regime. However, in the partially-quenched case N; = 0,
the distribution of topological charge is controlled by the heavy quarks only. Indeed the v
dependence of the leading-order partition function is found to be

2 1 _ _ ) L
Zlgoocexp - — / dUy| det(Uy)” exp <—Tr M(To + T} >,
< VFQZh:Mi%h U(Nz)[ o] det(Cho) 2 [ 1(Uo 0)}
(2.16)

which in the case N; = 0 implies:

1 -2

= — ~€ “ (2.17)
20 Yuwe

a scaling that makes the last term in eq. (B:1f) of O(e*), and therefore of leading-order. In
order to recover the results at § = 0 by averaging over topology, it is therefore necessary
to keep the last term in eq. (R.19) in the leading-order Lagrangian, or equivalently assume
that v ~ ¢~!. This is not necessary however as long as N; > 0, since the distribution of
topological charge in that case is controlled by the light quarks.

It is straightforward to derive the propagator for the & fields in the light or mixed
sectors from eq. (R.17), validating the power-counting of eq. (R.13) and ensuring that the
replica limit N; = 0 is well-defined:

1 _ _
<§l112 (‘T) 5[3l4(y)> = 5 |:(5[114(512[3A($ - Y, 0) - 6l1l26l3l4G(‘T - Y, 07 O)] ) (218)

1 M,%lhl

<£l1h1(w) éhzlz(y)> = 50uOmmA (T -y, —3 (2.19)
1 a 2

<§l112 (x) §h1h2 (y)> = _5511125h1h2G (m —v,0, Mhlhl) s (2.20)

while in the heavy sector there always appear the combination:

<<5h1h2 (z) — %5h1h2> <£h3h4(y) - %5h3h4>> =

1 _
[(5h1h45h2h3A($ - Y Mglhz) - 5h1h25h3h4 (G(‘T - Y Mglhlv M}%ghg)

2
+G0(M21h17M}%3h3)):|7 (221)



where

1 eipm _ 1
Alx, M?) = = . Az, M?) = Ax, M%) + 2.22
B 1 1pT
Gla, M2, M2) = — ¢ (2.23)
! 2 2 2\ (2 2\ ( Vi Np, 1
b0 07+ M) + M3) (3 + 0 i)
212 1
Goh12,043) = o (32m7z ) (2.24)
vere \ a2
and
b

is the mass of the meson fields made of the heavier quarks. The summation }_ , is taken
over the 4-momentum

p=2m(ng/T,ny/L,ny/L,n,/L), (2.26)

with integers n;’s. Note that the term Gy is formally of higher order if v ~ O(1).

In this work, one encounters G(z, MZ, M2) with M; = My = 0 only, both in full and
partially quenched theory.* In the full theory, G(z,0,0) can in principle be rewritten in
terms of A’s, as one would have expected on general grounds. In the case of N; = 2 and
Ny, = 1, which is the phenomenologically most interesting case, for example,

1pT
G(x,0,0) = %Z — o — = %A(x,()) - %A<:p, %M,fh). (2.27)
p#0 P (17 T m>

But we keep using the notation of G(z,0,0) for simplicity in both the general case with
N; + Ny, flavors and the partially quenched case, where a double pole appears.

Correlation functions are obtained by inserting appropriate source operators in the
above partition function and taking suitable functional derivatives [[f]. The U(N;) integral
over zero modes Uy is then done exactly, while the &, 7 integrals are treated perturbatively.
We return to the zero-mode integrations in section [ Here we will be working at next-
to-leading order in the perturbative expansion and therefore up to the £©) term in the
Lagrangian contributes:

£O) = 2 [(0,6)E@)? ~ 0@ @)] — oy Te My (x)]

2
T [ My (€() 00 + (@) | + Tomg e M) Tr 0,620, )]
—16%% [M] Tt [Ml (Uo + UQ)] . (2.28)

where the ellipses indicate terms of the same order that involve only &; or &5, and do not

contribute to the observables where valence quarks are only in the light sector, as we will
be considering in this paper.

4The fully quenched case needs special care; it will be discussed later.



3. Two-point correlation functions

Correlation functions are obtained by inserting appropriate source operators in the above
partition function and taking suitable functional derivatives [B]. Since we consider the
fully non-degenerate theory, we have to treat all possible N x Ny bilinear quark operators
separately. We therefore define

PY(x) = igi(x) 1505 (), §9(x) = qi(x)g;(x),
Al () = iqi(z) Y575 (), Vid(z) = iGi(2)7.q5(2). (3.1)
The corresponding operators in ChPT are to the leading order given by
Pi(e) = i% (U@l ~ 05U @)]5). (32)
§() = £ (W@l + 05U @) (33)
Afl(z) = i%[auU(l’)UT(w) — 0,U Y (2)U ()], (3.4)
2

Vij(:n) = i%[@HU(:E)UT(:E) + 8HUT(:E)U(:1:)]U. (3.5)

The conventional irreducible representations are obtained by appropriate combinations of
i’s and j’s. The charged pion-type meson operator and the neutral one are, for example,
given by (we simply denote 1 for the up quark and 2 for the down quark)

P (2) = %(Plz(x) +P2(2)), and P™(x) = %(P”(x) _P2(z)).  (3.6)
In the following, we use indices v and v’ in order to specify the valence sector which in this
paper is always taken to be in the e-regime.

In figures [l and P we show the Feynman diagrams resulting from the ¢ integration that
contribute to the current and scalar propagators at next-to-leading order in the e-expansion.
The scalar correlators start at O(e”), while the first contribution to the currents is O(€?).
Note that disconnected diagrams contribute because they are connected through the zero-
mode integrations. We also assume here that the operators are separated from each other
and the usual contact terms are not included.

For the practical purpose of comparing to lattice QCD simulations, we will present re-
sults in the non-singlet irreducible representation, or ”charged-pion” type correlation func-
tions, with the zero-momentum projection (integration over 3-dimensional space), namely,

Po(t) = 1 [ 2P (@) + P @)(P 0) + P O))ue (3.7
Sit) = [ @S (@) + 87 @)™ 0) + ST O))ue, (39
it = [ (A5 @) + A5 @)AF 0) + 45 O0)uie (39)
Vigl) = 1 [ a0 @)+ V@05 0+ G Oue (310

where we assume v # v'.



Figure 1: Diagrams contributing to the scalar and pseudoscalar connected correlators. The lines
are £ propagators. Squares indicate the scalar and pseudoscalar operators. The filled dots indicate
a mass insertion from the Lagrangian. Empty dots indicate the insertion of an operator coming
from the NLO Lagrangian, and they are also labeled with the subindex of the associated coupling
constant, L;.

Figure 2: Diagrams contributing to the vector and axial correlators. The lines are £ propagators.
Squares indicate the vector or axial vector operators. The filled dots indicate a mass insertion. A
cross indicate a contribution from the Jacobian. Empty dots indicate the insertion of an operator
coming from the NLO Lagrangian, and they are also labeled with the subindex of the associated
coupling constant, L;.
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We also present the ”disconnected” contributions for the scalar and pseudoscalars,
Pl (1) = / B (P ()P (0))ue, (3.11)

st ( / d(57 ()57 (0))ue. (3.12)

which are useful to estimate the finite size contributions from the chiral fields to the 7’
meson correlators.
To simplify the t-dependence of our expressions, let us define

2
I (¢/T) = %/d%ﬁ(w,o) _ % <T _ %) _ i (3.13)

and
r(t) = / &z G(z,0,0). (3.14)

Note that the latter still depends on the N}, heavier quark masses. In the appendix [A], we
list how to perform the zero-momentum projection of various combination of A(x, M?)’s.
Defining also

; =1- F N;A(0,0) +§;A 0, M%,/2) — G(0,0,0) — 16L6§;M£h] ., (3.15)
F 1 _ all n
7 =1 555 | NA©,0) + zh:A(o, M2, /2) — 8L4;M§h] : (3.16)
and
= m2V, (3.17)

the results for the pseudoscalar and scalar non-singlet (connected) correlators can be writ-
ten as

2 2
c _ 73 0(IV;) (V) 0V
P (t) = —L T [IC }NLO+2F2 [IC Thy < ) K r(t)], (3.18)
32 2 t
c . 3 0(INy) 1(NVy) 0(Vy)
S¢,(t)= L T [IC . ]NLO+—2F2 [IC_ Thy (—T> + K r(t)} . (3.19)

and their disconnected correlators are given by

P (t) = —L35? [/C%<N1>]NLO+ = [IC?’(NI)Th <T> —ICi(N’)r(t)}, (3.20)

2
22 [IC3(NZ)Th <T> —ICz_(Nl)r(t)], (3.21)

d _ 3522 [ 4-2(V1)
Sor(t) = L7 [’CJF }NLO F?

The K functions represent the zero-mode integrals over U(N;) and they depend only on
the light quark masses (to simplify the notation we denote Uy by U in this section):

1
KEM () = (o 4+ Uy £ UL, 2 UL ooy, (3.22)

— 11 -



K () = 1+ %(Uquv/v' + UL UL Vo) £ i(Ugv’ +UY, + he)un), (3.23)

K () = 3<<U £ UL W £ U Do, (3.24)

K3 ({u}) = <va Uy + U, UT Do) (3.25)
Where averages are over zero mOdeS:

(- Nowy E/U(Nl) dU(..)(det U)¥ e TEMUFUTM]] (3.26)

The label [|y o implies that the integral must be computed with Y instead of ¥. We will
present the explicit results for these integrals in section [
For the axial and vector (connected) current correlators we obtain:

F2 1 o T o 70
Ao (t) = —5% {\Zr : }NLO + 5y |Nikoo + Zkoo Mhh/2)]
» 2N
_Z <‘7-i1-(Nl) 4N <j+ - jg(Nl))> Thy <T> (3‘27)
F2 1 o) oL (™)
Viw(t) = =57 {-7_ l }NLO + o5y [Nikoo + Zkoo Mhh/2)] T
X uvy | 2N (o) o)
; <j_ + 5 (j_ J° ) Th T (3.28)
where we have defined
T—ka (M?) = TiA(o M?) —k L A(0,0), (3.29)
Y oo T oarTY Vv 0=t yr '
and the J functions are given by:
1
S {m}) = 5 U + Ul uy- (3.:30)
Uy U, +UU' , +hec.
0 () = 1.2 Lo+ Doy T RN, (3.31)
TEND (1)) = <(2mv + m,) S (3.32)
Uby(UMU )y + UL (UMU) e + hc.
:|:< ( l ) vvé l ) C>U(Nf)>:t('v<—>’l)/)

We stress that all the heavier mass dependence is explicit in the results of egs. (B.1§)-
B.19), B-20)-([B.21) and (B-27)-(B.29) since the zero-mode integrals involve the light sector
only. We also note that these results agree with those obtained for the special case of the

left-handed current two-point function obtained in [f].
Next, we need to discuss the ultraviolet divergences of A(0, M?)’s and similar ones
associated with G’s. The explicit form in finite volume is given by [,

M2
A0, M?) = W(ln M? + ¢1) + g1 (M?), (3.33)
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where ¢y represents the logarithmic divergence which is independent of M and the volume,
and g; denotes the finite volume correction [ff]. The numerical evaluation of g; is discussed
in section [j.

Since F' and m;X. are not renormalized at infinite volume, the logarithmic divergence
c1 must be absorbed in a renormalization of L;’s. The mass-independent shift in

1 1 1 1
L L —_ L L —— |-+ == .34
4— Ly + ezt L= 6+ (16772 <2 + N;) cl (3.34)

is enough to give finite results in the above correlators. This shift is exactly the same as
at infinite volume [II.

Note that the formally divergent expressions other than A(0, M?) (for non-zero M),

X 8
A(0,0) = ~ 775

1
k‘s M2 — ’
o0(M7) q:(,%2 " 4sinh®(\/]af? + M2T/2)

E 1
q p p. ;ﬁ i 12

(3.35)

become finite after dimensional regularization.

Finally we note that the dependence on the heavier quark masses is as expected on
general grounds (see also the discussion in [f]). Indeed, up to exponentially suppressed
finite-volume corrections in My L, the correlators above coincide with those in the e-regime
for N; light quarks as if there were no heavier quarks whatsoever. The only remnant of
the heavier quarks is seen in the modified low-energy couplings 3 and F, i.e. by the terms
that depend on My, in & and F. This is as usual in chiral perturbation theory.

3.1 An alternative mixed-regime expansion

As a check on our results, we have performed the same calculation by means of an al-
ternative method where the parametrization of fields is as in the standard e-regime. The
counting rule we use, however, is the same as the one in the standard p-regime for the heavy
flavors. All zero modes in the full SU(Ny) group are then treated non-perturbatively. Such
a parametrization has the advantage that the matching to the e regime is smooth by con-
struction.

The result of this alternative scheme leads to definitions of ¥ and F' which are identical
to egs. (B.15) and (B.16) except for the replacements A — A and G — G. Similarly, all
other results presented above are reproduced with the only difference that now all zero-
mode integrals are performed over the whole U(Ny) group and therefore depend on all the
quark masses, including the heavier ones.

In contrast to the results presented in eqs. (B.1§)-(B.21]) and (B.27)-(B.29)), in this
alternative approach one can take the limit Mp; — 0 smoothly. The results then coincide
with those fully in the e-regime. Indeed, our results in that limit agree with partially
quenched scalar and pseudoscalar correlators for non-degenerate masses that can be found
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in ref. [[5]. The left-handed current correlator can be found in [§], and our present results
also reproduce that special case.

The reason that the matching limit is smooth in this parametrization is because the
zero-momentum modes of the massive mesons are resummed, while in the expansion of
section [, they are treated perturbatively. The two results should therefore coincide when
the zero-mode integrals of the U(Ny)-theory are expanded to the appropriate order in
1/pp ~ O(€?). In the next section we will show that this is indeed the case. This provides
a rather non-trivial consistency check on our results, and it confirms that the expected
matching between ¢ and mixed regimes actually holds.

4. Non-perturbative zero-mode integrals

In this section, we complete the calculations of the correlators by giving explicitly the zero-
mode integrals defined in egs. (B-29)-(B.29) and (B.30)- (B-39), in the full (unquenched),
the partially quenched, and the fully quenched theories. Here we present the results of
general partially quenched calculations. As is well-known, the results for the full theory
can be viewed as special cases, obtained by equating the valence quark masses to those of
the sea quarks. The essential ingredient is the functional [E2],

e (@)

n-+m

Hg>z l(u Mz)H]>2 ’fl-‘rl(luj lu’zz)7

where p1; = m;XV. Here J’s are defined as J,4—1 (i) = (—1)j_1K,,+j_1(,uZ-) fori=1,---n
and Jy4j-1(ps) = Lyyj—1(wi) for i = n+1,---n + m, where I, and K, are the modified
Bessel functions. m = N, + N; denotes the number of (light) quarks, from which N, valence
quarks are quenched by the n = N, bosonic quark contents. Since we are interested in
mesonic two-point functions, we need n = N, = 2 at most.

From this functional, by taking appropriate derivatives with respect to the parameters
1;, one can derive all the required integrals, both in the full as in the partially-quenched
limits. The technical steps of our calculation have followed those of ref. [[[J] and in this
section we simply show the final results. Details of how this can be used to compute all
relevant group integrals are presented in appendix[J. An important relation can be derived
from Ward-Takahashi identities (see appendix [J) that holds for the full, partially-quenched
and quenched cases:

2N,
TN = 9y, £ my ) (SO £ Sy £ E—Vl(Jﬂ(N” — gy, (4.2)
As building blocks, let us define two quantities,

Sy (g {115) S

=l ot o 2l 1)), (13)
Opir Oppn 25 ) vly Ho2s W Ms
DY (pal) = tim DO Uzl o (hs) -
Hp1 = Hol,Hp2— Ho2 ZNZ({IUS})
where the sea quark mass dependence is denoted by {us} = {1, .-, u N, }.
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Let us also give their analogous expressions in the unquenched theory (we need only the
case where the valence mass is equal to one of the light sector, m, = m; in the e-regime.),

S (s {5 }) 9 S Yt {11s})
i e = —InZz¥ 1) = i v rw U 4.
i Oy 25, ({115 })
Dfuu . - 12 < Ny _ I DPQ ) ) .
v (Nll;ﬂl% {M }) ZKH({,US}) Nvilll’lﬂli v (,U, 15 Ho2, {M })7
(4.6)
and the fully quenched limits,
P F

lim ZVQ(IU”IM {NS}) — EVQ(MU) (4 7)

{is }—00 )Y DI ’

2

lim DYy, o, {pis}) = 14+ ———. 48
{ps}—o0 (b pz: {p1:}) Mol Ho2 (4.8)

4.1 Explicit results
With the above expressions, one can calculate all the non-perturbative integrals we need

to evaluate Jy etc. Further details can be found in appendix [B].

1. Full (unquenched) theory

We start by listing the results for the full (unquenched) theory, where the valence
masses are equal to those of the sea quarks (m, = m; and m, = my).

Elf/ull , <
Sl(Nz) (s {s)) = M, (4.9)
+2 (S, {ps}) S, {ps})
IO (. L} = < v M s v O s ) 4.10
S g (e }) = e (Z ) S (410)
2
I (g, {psy) = 1+ <sz/un(,ulaM'a {ns}) + MM/) , (4.11)
K3 v (1)) = D™ o (1) (412)
2
K2 (i {u}) = 2 4.13
(b prs s ) L (4.13)
1 S Apsy)  Z G, (s )
Icg(Nl) Iu 7/1/ ’y /’LS e (Iu ’ v ! 5 — ILL v ’ 5 > 5 414
(122, s { s }) s ! D> ! ) (4.14)
2
ji(Nl)(,UlaNlH {MS}) =14+ <D1f/u11(:ul7ul’7 {/’LS}) - MlMl’) ’ (415)
Efull ’ s Elfjull /, <
TE (s e, L) = 20y ) ( ) o B D)
2N; 0Ny 70(Ny)

where {MS} = {Mllaﬂl27 e lulNl }
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2. Partially quenched theory (NV; # 0)

The partially quenched results where the valence masses are different from the seq
quark masses, are obtained analogously for the case N; # 0,

S0 Xt {115}

S (o {p1s}) = FRgm, (4.17)
+2 5o Yo {ps}) S0 (i, {ps})
JCONL) o s {pis}) = v vy Us v v’y Us 7 418
£ (o ot {ps}) = 5 ¥ 5 (4.18)
1/2
KA G, () = 18 (DF i () + -2 ). (4.19)
KA (o pror {1 }) = DE Ut s, {11 }). (4.20)
2
12D (i (s = —— 4.21
(o s s }) = 2= (4.21)
1 v (s Ansd)  E0 (e {ns})
3(Ny) , _ Rt v AMss) v v’y Ws '
K2 (o, gy {115 3) 2 <:Uv = o S ; (4.22)
V2
T2 o 1)) = 1 (DE i ) = -2 ). (4.23)
ZIP/)Q vy s 2IP/)Q v s
T e (1) =2<mvimm< o f)) B s i)
2N 20 40
T (79 -T9). (4.24)

3. Partially quenched theory (NV; = 0)

In the case with N; = 0, one needs the fully quenched integral over Uy:

FQ
S () = 4572 Zg“”), (4.25)

2 (20%m) 20 %(uw)
KO (1 ) = v _\Hv v S 4.26

£ (o ) = S s F (4.26)
’Ci(o) V) 2(0) %

Dt oo Pol) oy ) = , 4.2
5 K2 (B, ) L+ (4.27)
ICl(O) s ! 2
K ) _ g0y, oy 2 V2 (4.28)
2 How Py
1 202 (o) o ()

3(0) N — Pt \aPA Yl A 4.29
K2 (o piar ) PR <uu = o=, ; (4.29)
j_‘?(o) (MU?/’LU/) = 27
j_O(O) (1o, ftr) = O. (4.30)

EEQ v EEQ v/
j:i(O) (/Lvmuv’) = 2(mv imv’) ( Eglu ) + z(:,u ) (4'31)
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4. Fully quenched theory (N; = N, =0)

When N; = Nj, = 0 or the theory is fully quenched, the zero-mode integrals we use
are the same as the partially quenched case with N; = 0 above. But we need further
to include the singlet degree of freedom for the non-zero modes, with additional low-
energy constants a and mZ as quenched artifacts [, [, [0, [J. This results in the

modification of () to
AN
T T 30

213
T(t) = i <— moT
where N, denotes the number of colors. See e.g. ref. [l for details.

24

+ ozThl(t)) , (4.32)

Using the unitarity condition given in ref. [L5], we have checked that all of the above
expressions precisely reproduce the known results for degenerate N; # 0 flavors (setting
Nj, = 0), and the quenched results (the N; = Nj, = 0 limit), obtained earlier [[[1], [J].

4.2 Equivalence of the two mixed-regime expansions

The apparent difference between results obtained in the two mixed-regime expansions con-
sidered in section [] arises from the contribution of the zero-momentum modes of the heavy
mesons. They are computed perturbatively in the first case and resummed in the second.
In order for the two results to agree, an additional expansion in 1/ ~ €2 of the zero-mode
integrals for U(Ny) must of course be performed so that only terms at subleading order

in the € expansion are consistently kept in the correlators. Performing this expansion one
finds:®

) (. ) = T2 () (l 2 i) # 2 ),
h

h

TED Gy fn)) =TIV () + 0 (i) ,

R (G ) = K2 () (1- 3 2 ) w0 (L)
+ HigsiMhy) = Ay Hi un )

h
A (G ) = K2 () +0 () m= 123 (1:83

We have here denoted

1
[ = i <1 zh: Mh) . (4.34)
Using these expansions the results from the two different schemes agree.

As another non-trivial check in the opposite direction, one can also confirm that a
fully perturbative approach as in the p-regime, where all of Ny = N; + N, flavors are
perturbatively treated, is consistent with our results in an unrealistic limit F'L > 1 while
M, L <1 kept.

5 . . . .
°We have checked these expansions in several special cases with a rather small number of flavors.
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5. Useful examples for 241 flavor theory

In this section we give some explicit examples that are useful when comparing with lattice
QCD simulations. Here we consider the 2+1 flavor theory where the up and down quark
masses are degenerate, m, = my and different from the strange quark mass ms. We choose
the low-energy constants to be the phenomenologically reasonable values F' = 90MeV,
/3 = 250MeV, L}(0.77GeV) = 0.1 x 1073 and Lj5(0.77GeV) = 0.05 x 1073,

For the calculation of g; (M?), we use an expansion in the modified Bessel function [[5],

|ni|§nmax M
91(M2) = Z mKl(MWDa (5.1)
a#0

where the summation is taken over 4-dimensional vector a, = (noT,n1L,n2L,n3L) with
integers n;’s. Truncation above at nya.x = 5 already shows a good convergence when M >
200 MeV and L = T'/2 = 2fm, for example.

In this theory, and for the cases we will consider, one can express G(x,0,0) in terms
of Az, M?):

_ 1 _ _
G(z,0,0) = 3 [AA (az,Mg) + BA(z,0) + C Op2 A(x, 0)] , (5.2)
and, therefore,

d*z G(x,0,0)

[A (Z°ifll(i‘f££&}§//?f - M12T> + BTh(t/T) + CTth(t/T)}

r(t) =

W = wl}—t\

n
= [BThl(t/T)+C’T3h2(t/T)—m—i—@(e_M”t)]. (5.3)
n
where
ho(t/T) = — t2t121 5.4
(0 =5 |(5) (5-1) - 55 (5.4

and A, B,C, M, are functions of the p-regime masses only. The term proportional to C
only appears in the case with NV; = 0. With this set up, one obtains

_ - 1
A(0,0) = b A2 A0, M?) [y = T

Na

where 31 and (3 are the usual shape coefficients and pig,p (=0.77GeV in this section) is the

In 2, V% — B, (5.5)

subtraction scale.

With this input,one can now calculate meson correlators on the basis of our expressions.
In the following, we will give two examples where in both we let the volume size be given
by L = 2fm. One is the case where the physical up and down quarks are in the e-regime,
i.e., Ny =2 and Nj, = 1. The other is the case with rather heavy sea quark masses, i.e.,
Ny = 3, but the valence quarks are taken to the e-regime.
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As seen below, the 1-loop corrections to the condensate and decay constant are con-
siderable even in the limit V' — oo because of large strange quark mass. Recently, it has
been argued that Ny =2+1 flavor ChPT at NLO may have difficulty in fitting lattice QCD
data [, 7). It is clearly important to check whether NNLO contributions are essential
for analyzing such lattice results at the physical s-quark mass, or if the strange quark is
simply out of the region where ChPT provides a useful expansion. If the latter case is true,
one would need to integrate the strange quark out and use an "effective” Ny = 2 ChPT. In
this paper, we do not wish to address this issue and hence just give the NLO formulae for
the Ny =241 theory. Even in the Ny = 2 theory one may be interested in keeping the u
and d quarks in the p-regime, while taking the valence quarks masses to the e-regime. Our
formulas given in this paper easily extend to that case, but we do not display them here.

5.1 The case with N; =2, N, =1

Let us first choose m, = mgq = 2MeV, my; = 110 MeV, where the physical pions are
certainly in the e-regime in a volume as small as L = 2 fm.
In this case, the coefficients of eq. (p.d) are

1 1
A=—3, B=3 C=0, )= Thi(y/T)+

> . (5.6)

1
6M2T”

where Mg = %M 2 = 4§’1F522. The 1-loop corrections to the condensate and decay constant

are then given by

D U [ oss M2 ooM2 o ME M2 2
> T : — —32L" M

x F?2 QW 1672 n Mgub + 0672 n ,Ugub 6M$V G(ﬂsub) K>

F 1 26 M3 . ME )

F 2F?2 [ \/v + 1672 n Iugub 4(/Lsub) K| ( )

where M7 = m,%/F?, and we have neglected exponentially small g;(M3) and g1(M7)
(< (1MeV)?). One can ignore ki,(M2%), too. sy, = 770MeV is what we have taken as
the subtraction scale. In the case with L = T'/2 = 2fm (where $; = 0.0836), one obtains
Y =1.3% and F = 1.2F, respectively.

For the zero-mode integral, we use the partition function

1

02— P o

Zf,1+(Nl:2) (1o, ) =

Ky (1) I, (po) L(p)  p'a(p)
=Ky (py) polvra(po) plovi(p) L)
P Ko (uy) p2Lro(po) (2 Lvo(p)  plyg (1)
— g Kora(iw) i loya(po) 12 Lva(p) p*Ior2(p)
HpB8v1+3\Hb) Hydv+3 o) HoLv43 (1) B dy2(f

x det

where = m XV = mg2V.
When the valence masses are degenerate, we use

a2 (10, 1) 0 _ oS ()

0
= 2
Ky 5 ’ - ey
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2

14 V2
]Czll: = 1 j: <DEQ(/’LU7,U"U7IU) + _2> 9 \7:2 - 1 j: <D5Q(MU7NU7N) - _2> 9
Ky Ho
PQ

X0 (o, 4
Jh= 8mv¥ -5 (72 - 90, (5.9)

We now present the explicit form of the correlators for the pseudoscalar and axial
vector channels with m, = m,,

Pe () = L3 2 2 ) 2 0,50, )
b 2[4y X 6F2M3V by
2 P V2 0,5 (s 1)
Q Uy =V (O8]
+oms (1 + Dy (s o 1) + i Thy(t/T), (5.10)
FNQ P ~ ~ ~ 7/2 Tkoo P I/2
gv/(t) = _ﬁ <1 +DVQ(MU7MU7M) — E) + T <1 - DVQ(MU,MU,M) + M_%>
201, Ty %
—ﬂMThl(t/T), (5.11)

V b

where fi; = m; V. We plot these correlators in figures [} and [ using koo = 0.08331 for
this case.

52 N, =0, N, =3

As the second example, let us consider the case with m, = mg = 30 MeV, m; = 110 MeV
while the valence quark masses are taken to be very light, m, = O(1) MeV. In this case,
all the sea quarks are in the p-regime and we therefore have N; = 0 and N, = 3. In this
case, we have

2(M2, — M2,)? 2(M2; — MZ)? Mg M
A= AWMy m M) 20y e Me)” g MugMs g
(Mud + 2MS28)2 (Mud + 2M828)2 MUd + 2M525

while M7 = (M2, +2M2) /3, where M2, = (my +mq)X/F?, M2, = 2m,%/F?. Note that
a double pole contribution now appears in r(t) as a partial quenching artifact since C # 0.

The 1-loop corrections to the condensate and decay constant in this case are

> 1 [2M2 . M? M2 M?
i — In == +2g;(M3?) + —£ 1n =K 5.13
3 2| 1672 n Mgub + 2g1 (M7) + 1672 n Mgub ( )
_é Mg n Mg o 1 +B B g In Mgubvl/z + By
3\16m2 2, M2V 3VV 3 1672
_32Lg(/‘sub)(M7% + MI2{) )
F 1 |[2M2 . M2 M2 M?
—=1- T ln 2 + 291 (M? K n K _16L" M? + M3
F 2F2 | 1672 " Mgub + 91( W) + 1672 n gub 4(:usub)( r T K) )

where ME = (my + my)X/F 2 denotes the pion mass. Again we set pgq, = 770 MeV. In
this case, the corrections are uncomfortably large: ¥ = 1.5% and I = 1.2F.
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The zero-mode partition function for IV; = 0 is given by

Ky () L (po)
ote _oy (| ptw) = det v . 5.14
(=0 ) — B 1 (1) o () 61
When the valence masses are degenerate, we use
O S0 () 0 (o) v?
)0 :2M7 ]C(i__zuj Kl =242,
- % 75> * 12
np?
J0 =2, Jo =0, Jl= SmU%. (5.15)

Here we present the correlators for the pseudoscalar and axial vector channels (m, =
mv’)?

- F ~ F
Po(t) = L 22 5 m) + AX? 0, gm)
v 2%, % 3F2M2V %

+

(%

»2 V2 2B, 551y
= o499l T ZHeTV MU/ ) T
2F2< 23 > ha(t/T)

22 (2C 8,50 %) \ g
T <?? T3hy(t/T), (5.16)
£ 24y EEQ(/‘U)

Aw () = — = 57— — Tl (t/T), (5.17)

where fi; = m;XV. We plot these correlators in figures f| and [i.

6. Conclusions

We have developed a new scheme of calculations for chiral perturbation theory with non-
degenerate quark masses in finite volume. With our new counting rules separating N
light quarks in the e-regime and the other Nj quarks in the p-regime, we have calculated
the meson correlators in various channels: pseudoscalar, scalar, vector and axial vector.
We have also calculated the disconnected contributions for the pseudoscalar and scalar
channels.

With the help of the replica method, we have also extended our study to the partially
quenched case. Our results are shown to be consistent with all earlier work in the literature,
both in the quenched and full QCD limit, with degenerate valence quarks.

Our results can be compared to lattice QCD simulation with 2+1 flavors where the up
and down quark masses are very light, but the volume is such that the theory is in the e-
regime with respect to the corresponding pseudo Nambu-Goldstone bosons. The two-point
functions are useful to determine the leading low-energy constants, the chiral condensate X,
and the pion decay constant F' in the chiral limit. As we have demonstrated, the formulae
may also be used to extract the numerical values of higher-order low energy constants L4
and Lg. This work can be extended to other observables in the case where one valence
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v=0, m;=2 MeV, m=110 MeV

‘m~1MeV ——
14 M=2MeV - 8
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«® o
= 20 } i
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Figure 3: The pseudoscalar correlators with m, = 1-3MeV, m, = mq = 2MeV and mg =
110 MeV in a sector of trivial topology, v = 0 (top) and in sectors of v = 0-2 for fixed m,, = 1 MeV
(bottom). We set L = T/2 = 2fm and the correlators are normalized by the Sommer scale

o = 0.49fm [4g.

quark is heavy, i.e. the chiral dynamics of kaons. With the new partially quenched chiral
perturbation theory in this mixed regime one has an excellent analytical tool with which
to explore future lattice simulations with nearly massless v and d quarks. It would be most
interesting to investigate by analytic means also the region between the two regimes, where
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Figure 4: The axial correlators for same parameter values as in figure E
myL ~ 1.
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Figure 6: The axial correlators for the same parameter values as in figure H

work was completed.

A. Space-integrals involving propagators

In this appendix, we list several useful formulae for zero-momentum projection (or, equiv-
alently, 3-dimensional space integrals) of functions expressed by A(z, M?).
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A useful identity is

2

which holds for an arbitrary regular function g(p). The zero-mode projection of A(z, M?),

9(F)c e _ L ! j —M(z—~L/2) ; M(z—L/2)
THTEE‘ﬂﬂﬁm@ﬂka +g(=iM)e LA

for example, can be easily derived by setting g = 1;

1 cosh(M(t —T/2)) 1
dBrA(z, M? — . A2
/ 2B M) = S (MTj2)  MET (4.2)
We are particularly interested in the massless limit:
5 1 2T
d*xA(x,0) T 5) “51= =Thi(t/T). (A.3)
It follows its second time derivative is given by
M cosh(M(t —T/2))
d*zOi Az, M? A4
/ 20, M7) = 2 sinh (MT/2) (A-4)
- 1
/dgzn@gA(x,O) =7 (A.5)
In this paper, we have also needed the following integral involving two A’s
/d3$/d4z80A(z —2,0)90A(2,0) = Thy(t/T), (A.6)

and the more non-trivial integral

/dgzn (OoA(, M?)doA(z, M?) — Az, M?)RA(x, M2))

_ T (s cosh(M(t —T/2)) 1
v <kOO(M2) M2T2> ( 2M sinh(MT/2) M2T> » (AT

where
-1
ko (M?) = _ : (A.8)
q:(g%m) 4sinh?(y/]q|2 + M2T/2)
The chiral limit of eq. (AJ7) is given by
. _ § - T T
&’z (oA(x,0)00A(x,0) — A(z,0)05A(x,0)) = Vkoo + Vhl(t/T), (A.9)
where ) )
koo = — A10
0 2 Lsmh2(qT/2) | 12 (A.10)

q=(p1,p2,p3)#0

becomes now a constant depending only on the shape of the box [].
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B. Summary of zero-mode group integrals

Here we summarize the most essential zero-mode group integrals which are needed in the
general partially quenched case, see also ref. [[J] for additional details.

The zero-mode contribution to the partition function with n bosons and m fermions
is known as seen in eq. (f.1)). In this paper, we need the case with (n,m) = (1, N +1) (N
is the number of physical quarks):

1
Zfl—i—N(Nb’va {:us}) - N N (B’l)
Hslzl(/‘% — 13) H52>83(M§2 - 1@3)
Ku(ﬂb) II/(NU) II/(Nsl) [u(,us2)
— oKy 1(pn) produy1(po) pstluv1(pst) psalyy1(ps2) - -
xdet 9 9 9 5
t Koo () polvr2(po) palvr2(pst) pialvro(ps2) <+
and (n,m) = (2, N + 2):
2572+N(Nb17,ub2|,uvlaﬂv2, {us}) = (B.2)
1
N N
(/‘132 - /‘1%1)(/%2;2 — p2n) iy (2y — w20) () — 12y) Hs2>s3(l‘§2 — 123)
Ku(,ubl) KI/(,UIQ) [V(,le) II/(,U”U2)

— i K1 (1) — w2 K1 (102) to1 Lu1 (o) poady1(fe2) -+

x det
i Kovo(p) i Kuro(2) 121 Lo (pn) p2olya(pe2) - -

Here pp = mpXV, py = my, XV, where my, m,, denote the masses of the valence bosons,
the valence quarks respectively. Partially quenched observables can be computed by dif-
ferentiating eq. (B-) or (B.9) with respect to suitable sources and subsequently taking the
limit pup — py.

As building blocks, we use two quantities defined in eqs. ({.3) and ([£.4),

EII/)Q (,Uv, {/‘s})

> and DIIJDQ(MUDMU% {MS}) (B3)

Note that in the degenerate limit p,1 = 2 = tiy,

0 0 ZVin(mlee{ns})  ASYUUuy, {1s))

DYy, i, {p1s}) = — lim — = . (B4
st Abad) = = O B 2 (ta)) > (B4)
The needed formulae for one valence index are
1 S0 (o, { s
(U + ULy = e ll]) (B.5)
1 By X0 oy {1s})  ASL g, {1
_<(va +U;[U)2>U — K (:u' {M }) - (:u' {M })7 (BG)
4 by >
1 v
AUy = Ul )y = ——, B.7
5 M = = (5.7
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| S, i) | 2

: _pty?y, = _2v e fsy) Y
1 (U = UL > o (B.8)
1 1
(vaUzJ)rv>U = Z<(va + U;rv)2>U - Z((va - Ujv)2>U (B.9)
0w S () AR {nsd) | B ()
b) ) D> 1
For two valence indices,
1
7 (Uos + UL) U + UL = DYoo s, {115}), (B.10)
Y U~ UL) U — Ul = 2, (B.11)
4 v Hov oy
202
<vaUv’U’>U + (U’I’UU'I’U’>U = 2DEQ(MU7NUI7 {:us}) + Lol L (B'12)
Similarly,
1 1
Z<(va’ + U;rfy)2>U = Z((Uv’v + UJU/)2>U
+1 +1
- 7<UUUIUZ’U>U = 7<Uv’vUjv/>U
__*l 2o fush) 20 )
w2 — 2\ ) o ) ’
1
Z<U3v’ + (UZ’U)2>U = 07 (B13)
as well as
1 ; ; 1 S0 o {ns)) S0 (i, {ps})
- == / v'v + / = v’ — Mo P
4<(U”” Vo) (U Yuwr (2 — <” by a )
(Up U, + Uy ULV = 0. (B.14)

were also derived in ref. [LF].

C. Some Ward-Takahashi identities at fixed topology

For the computation of vector and axial vector correlation functions we needed a set of
zero-mode expectation values involving three zero-mode fields U. These can be reduced
to known integrals by means of exact identities on the group manifold of U(N). Such
relations correspond to Schwinger-Dyson equations on the group manifold and encode, in
physics terms, Ward-Takahashi Identities (WTT) of spontaneous chiral symmetry breaking
in a sector of fixed topological charge v. The derivation below follows the method described
in detail in appendix B of ref. [T].

Let t* denote generators of U(N) in a chosen representation, here the fundamental. In
addition, let €, be infinitesimal parameters. We introduce left-handed differentiation V¢
on the group by means of

F(e"U) = F(U) + ¢ VFU)+... (C.1)
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The derivatives V* give rise to a standard Leibniz rule, and left-invariance of the Haar
measure on U(N) ensures that

/ AU VR = 0. (C.2)

Choosing different functions F'(U) this simple identity generates an infinity of exact rela-
tions on the coset of symmetry breaking for the zero-mode fields. For the present purposes
we can choose, e.g.,

F(U) = Te[MU]Tx[UT M) P(U), (C.3)
where M and M, are arbitrary N x N matrices, and the Boltzmann weight P(U) is defined
in the obvious way:

P(U) = (detU)” exp [%tr(MU+UTM)] : (C.4)

Different choices of the matrices M7 and My lead to identities that are useful in con-
nection with the vector and axial vector correlators. For example, (M;);; = Oi 2 j and
(M3)ij = 0iydy; (and the similar choice with indices v and v swapped) gives, after use of

the U(N) completeness relation (with a sum over a) (t*);;(t)u = 26udjx,
2
WL WMD)} = (MUl = oV 400U (©5)
U

where we used M = M, and the hermitian conjugate relation (Note (detU)” =
(det UT)™),

2

T T 1oyl = 7o -
<UUU(U MU )v v >U <Mv v va v

(N — u)Uij,v,> . (C.6)
U

Another choice, (My);; = (5,~vtg,j and (Ma);j = 0;v0,; gives

2
XV

See the appendix [B for the last equality to zero. The hermitian conjugate is also vanishes,

Ul (UMU)y)o = (N +v) <UJ,UUM>U — 0. (C.7)

<Uv’v(UTMUT)v’v>U =0. (CS)
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